Cytochrome P450 1B1 inhibition suppresses tumorigenicity of prostate cancer via caspase-1 activation

نویسندگان

  • Inik Chang
  • Yozo Mitsui
  • Seul Ki Kim
  • Ji Su Sun
  • Hye Sook Jeon
  • Jung Yun Kang
  • Nam Ju Kang
  • Shinichiro Fukuhara
  • Ankurpreet Gill
  • Varahram Shahryari
  • Z. Laura Tabatabai
  • Kirsten L. Greene
  • Rajvir Dahiya
  • Dong Min Shin
  • Yuichiro Tanaka
چکیده

Cytochrome P450 1B1 (CYP1B1) is recognized as a universal tumor biomarker and a feasible therapeutic target due to its specific overexpression in cancer tissues. Despite its up-regulation in prostate cancer (PCa), biological significance and clinicopathological features of CYP1B1 are still elusive. Here, we show that overexpression or hyperactivation of CYP1B1 stimulated proliferative, migratory and invasive potential of non-tumorigenic PCa cells. Attenuation of CYP1B1 with its specific small hairpin (sh) RNAs greatly reduced proliferation through apoptotic cell death and impaired migration and invasion in PCa cells. Intratumoral injection of CYP1B1 shRNA attenuated growth of pre-existing tumors. The antitumor effect of CYP1B1 shRNA was also observed in prostate tumor xenograft mouse models. Among the genes altered by CYP1B1 knockdown, reduction of caspase-1 (CASP1) activity attenuated the antitumor effect of CYP1B1 inhibition. Indeed, CYP1B1 regulates CASP1 expression or activity. Finally, CYP1B1 expression was increased in higher grades of PCa and overall survival was significantly reduced in patients with high levels of CYP1B1 protein. CYP1B1 expression was reversely associated with CASP1 expression in clinical tissue samples. Together, our results demonstrate that CYP1B1 regulates PCa tumorigenesis by inhibiting CASP1 activation. Thus, the CYP1B1-CASP1 axis may be useful as a potential biomarker and a therapeutic target for PCa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rsk-mediated phosphorylation and 14-3-3ɛ binding of Apaf-1 suppresses cytochrome c-induced apoptosis.

Many pro-apoptotic signals trigger mitochondrial cytochrome c release, leading to caspase activation and ultimate cellular breakdown. Cell survival pathways, including the mitogen-activated protein kinase (MAPK) cascade, promote cell viability by impeding mitochondrial cytochrome c release and by inhibiting subsequent caspase activation. Here, we describe a mechanism for the inhibition of cytoc...

متن کامل

Rsk-mediated phosphorylation and 14-3-3e binding of Apaf-1 suppresses cytochrome c-induced apoptosis

Many pro-apoptotic signals trigger mitochondrial cytochrome c release, leading to caspase activation and ultimate cellular breakdown. Cell survival pathways, including the mitogen-activated protein kinase (MAPK) cascade, promote cell viability by impeding mitochondrial cytochrome c release and by inhibiting subsequent caspase activation. Here, we describe a mechanism for the inhibition of cytoc...

متن کامل

A new selective and potent inhibitor of human cytochrome P450 1B1 and its application to antimutagenesis.

Human cytochrome P450 (P450) 1B1 is found mainly in extrahepatic tissues and is overexpressed in a variety of human tumors. Metabolic activation of 17beta-estradiol (E(2)) to 4-hydroxy E(2) by P450 1B1 has been postulated to be a factor in mammary carcinogenesis. The inhibition of recombinant human P450 1B1 by 2,4,3',5'-tetramethoxystilbene (TMS) was investigated using either bacterial membrane...

متن کامل

Minocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation

Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...

متن کامل

Minocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation

Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017